PhysiologyWeb Logo  Search
PhysiologyWeb Loading...

Glossary of Physiology Terms
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Search

There are 20 glossary search results for:   Membrane Potential




Definition:
The action potential is a rapid and reversible reversal of the electrical potential difference across the plasma membrane of excitable cells such as neurons, muscle cells and some endocrine cells. In a neuronal action potential, the membrane potential rapidly changes from its resting level of approximately -70 mV to around +50 mV and, subsequently, rapidly returns to the resting level again. The neuronal action potential forms an important basis for information processing, propagation, and transmission. In muscle cells, the action potential precedes, and is necessary to bring about, muscle contraction. Some endocrine cells also exhibit action potentials, where the excitation leads to hormone secretion.

The action potential is also referred to as the electrical impulse or nervous impulse.

Related glossary terms/phrases:
Graded potential

See also:
Neuronal Action Potential



Abbreviation:
Veq. or Eeq.

Definition:
Refers to the membrane potential at which there is no net movement of an ion across the plasma membrane into or out of the cell.

See also:
Resting Membrane Potential - Establishment of the Membrane Potential
Resting Membrane Potential - Nernst Equilibrium Potential
Nernst Potential Calculator



Definition:
The voltage difference across a cell plasma membrane.

The membrane potential is generally inside negative with respect to the outside, where the outside potential is generally set as the reference value. In electrically excitable cells, the value of the membrane potential can be positive (inside with respect to the outside) during electrical activity (i.e., during action potentials).

Related glossary terms/phrases:
Resting membrane potential

See also:
Resting membrane potential



Definition:
The voltage difference across a cell plasma membrane in the resting or quiescent state. It is also simply referred to as the resting potential (Vrest). The value of the resting membrane potential varies from cell to cell. Depending on the cell type, it can range from −90 mV to −20 mV.

For example, Vrest is −90 mV in skeletal and cardiac muscle cells as well as in astrocytes. In a typical neuron, Vrest is approximately −70 mV. In many non-excitable cells, Vrest ranges from −60 to −50 mV. In photoreceptors, Vrest is about −20 mV.

See also:
Resting membrane potential



Abbreviation:
CI

Definition:
The main anion (negatively charged ion) of the extracellular fluid.

Cloride (Cl) plays an important role in several physiological processes such as the action potential of skeletal muscle cells, CO2 transport in blood (via Cl/bicarbonate exchange across the plasma membrane of red blood cells), and many other processes.

The extracellular concentration of Cl is about 110 mM. The intracellular concentration of Cl is about 10 mM.



Definition:
Refers to a change in the value of the membrane potential, where the membrane potential becomes less negative (or more positive) than the resting membrane potential.

Related glossary terms/phrases:
Repolarization
Hyperpolarization

See also:
Resting Membrane Potential - Introduction
Figure showing depolarization, repolarization, and hyperpolarization



Definition:
In biological solutions, electrical gradient refers to the electrical potential that acts on an ion to drive the movement of the ion in one or another direction (see Resting Membrane Potential - Establishment of the Membrane Potential).

Related glossary terms/phrases:
Chemical gradient
Electrochemical gradient



Abbreviation:
VDF

Definition:
When an ion is not at its electrochemical equilibrium, an electrochemical driving force (VDF) acts on the ion, causing the net movement of the ion across the membrane down its own electrochemical gradient.

The electrochemical driving force is generally expressed in millivolts and is calculated according the following equation:

VDF = VmVeq

where VDF is the electrochemical driving force, Vm is the membrane potential, and Veq is the equilibrium potential.

Related glossary terms/phrases:
Membrane potential
Equilibrium potential
Electrochemical gradient

See also:
Resting Membrane Potential - Electrochemical Driving Force Acting on Ions
Electrochemical Driving Force Calculator



Definition:
Refers to the balance of chemical and electrical gradients that act on an ion, particularly as it relates to the movement of an ion across a biological membrane (see Resting Membrane Potential - Establishment of the Membrane Potential and Resting Membrane Potential - Nernst Equilibrium Potential).

Related glossary terms/phrases:
Chemical gradient
Electrical gradient



Definition:
Electrophysiology is the study of the electrical properties of biological macromolecules, cells, tissues, and organs. Electrical signals such as voltage and/or current are generally measured. Examples include measuring changes in the membrane voltage of excitable cells (e.g., neurons, muscle cells, and some endocrine cells) during an action potential. The current carrried by ions as they permeate the pore of ion channels can also be measured - both at the single-channel level (single-channel current), as well as the macroscopic current resulting from the activity of a population of channels. As another example, electrical measurements may involve recording voltage changes at the surface of the skin that result from the activity of skeletal muscles (electromyogram, EMG), cardiac myocytes (electrocardiogram, ECG), or neurons in the brain (electroencephalogram, EEG).



Definition:
The Hodgkin cycle represents a positive feedback loop in neurons, where an initial membrane depolarization from the resting value (∼ −70 mV) to the threshold value (∼ −50 mV) leads to rapid depolarization of the membrane potential to approach the equilibrium potential for Na+ (VNa ≈ +60 mV). The voltage-gated Na+ channels of neurons are responsible for the Hodgkin cycle.

See the figure depicting the Hodgkin cycle.

See also:
Important Features of the Neuronal Action Potential



Definition:
Refers to a change in the value of the membrane potential, where the membrane potential becomes more negative than the resting membrane potential.

Related glossary terms/phrases:
Depolarization
Repolarization

See also:
Resting Membrane Potential - Introduction
Figure showing depolarization, repolarization, and hyperpolarization



Definition:
An equation used to calculate the equilibrium potential (Veq.) of an ion. The equilibrium potential for an ion is also referred to as the Nernst potential for that ion. It is the membrane potential at which no net movement of the ion in question occurs across the membrane.

General form of the Nernst equation

where Veq. is the equilibrium potential, R is the universal gas constant, T is the temperature in Kelvin, z is the valence of the ionic species, F is the Faraday's constant, and [X]o and [X]i are the extracellular and intracellular, respectively, concentrations of the ion in question.

See also:
Resting Membrane Potential - Nernst Equilibrium Potential
Derivation of the Nernst Equation



Definition:
Refers to that part of the action potential where the membrane potential is positive (inside with respect to the outside).

See figure.

See also:
Neuronal Action Potential - Important Features of the Neuronal Action Potential



Definition:
Refers to the return of the membrane potential toward the normal resting value after a membrane depolarization.

Related glossary terms/phrases:
Depolarization
Hyperpolarization

See also:
Resting Membrane Potential - Introduction
Figure showing depolarization, repolarization, and hyperpolarization



Abbreviation:
Na+

Definition:
The main cation (positively charged ion) of the extracellular fluid.

Sodium (Na+) plays an important role in several physiological processes such as the action potential of neurons and muscle cells, secondary active, sodium-coupled transport of ions, nutrients, neurotransmitters across the plasma membrane of cells, and many other processes.

The extracellular concentration of Na+ is about 145 mM. The intracellular concentration of Na+ is about 15 mM.



Definition:
Refers to the rapid depolarization of the membrane early in the action potential. In neuronal, skeletal muscle, and cardiac muscle action potentials, the Hodgkin cycle is responsible for the spike phase of the action potential.

See figure.

See also:
Important Features of the Neuronal Action Potential



Definition:
Sub-threshold (or subthreshold) refers to a stimulus that is too small in magnitude to produce an action potential in excitable cells.

In general, a sub-threshold stimulus leads to the depolarization of the membrane, but the magnitude of the depolarization is not large enough to reach the threshold voltage. Therefore, sub-threshold stimuli do not elicit action potentials.

Related glossary terms/phrases:
Threshold
Supra-threshold

See also:
Neuronal Action Potential - Introduction



Definition:
Supra-threshold (or suprathreshold) refers to a stimulus that is large enough in magnitude to produce an action potential in excitable cells.

In general, a supra-threshold stimulus leads to the depolarization of the membrane, and the magnitude of the depolarization is larger than that necessary to simply reach the threshold voltage. Therefore, supra-threshold stimuli elicit action potentials.

Related glossary terms/phrases:
Threshold
Sub-threshold

See also:
Neuronal Action Potential - Introduction



Definition:
The membrane voltage that must be reached in an excitable cell (e.g., neuron or muscle cell) during a depolarization in order to generate an action potential. At the threshold voltage, voltage-gated channels become activated. Threshold is approximately −50 to −40 mV in most excitable cells.

Related glossary terms/phrases:
Sub-threshold
Supra-threshold

See also:
Neuronal Action Potential - Introduction









Posted: Sunday, March 31, 2013
Last updated: Friday, August 28, 2015