PhysiologyWeb Logo  Search
PhysiologyWeb Loading...

Glossary of Physiology Terms
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Search

There are 12 glossary search results for:   erg




Definition:
Refers to neurons, synapses, or receptors where acetylcholine is used as the neurotransmitter.

For example, cholinergic neurons release acetylcholine as their neurotransmitter.

In cholinergic synapses, acetylcholine is released from the presynaptic neuron, and it acts on acetylcholine receptors in the plasma membrane of the postsynaptic cell.

Cholinergic receptors are those that respond to acetylcholine as the physiological ligand. The two major types are nicotinic and muscarinic cholinergic receptors (may also be referred to as nicotinic and muscarinic acetylcholine receptors).

Cholinergic drugs are compounds that mimic the action of acetylcholine by binding to and activating cholinergic receptors.



Definition:
Condition in which the plasma glucose concentration is abnormally high. In general, a fasting plasma glucose concentration higher than 110 mg/dL, or a postprandial plasma glucose concentration higher than 180 mg/dL is considered abnormally high.

Normal, fasting glucose concentrations range from 70 to 110 mg/dL.

Related glossary terms/phrases:
Hyperglycemic
Hypoglycemia
Hypoglycemic



Definition:
Related to, or pertaining to hyperglycemia.

An agent that causes an increase in plasma glucose concentration (i.e., induces hyperglycemia).

Related glossary terms/phrases:
Hyperglycemia
Hypoglycemia
Hypoglycemic



Definition:
An enzyme found in the synaptic cleft at cholinergic synapses. It degrades acetylcholine to choline and acetate and, thus, terminates the action of acetylcholine at the synapse. Neither choline nor acetate can bind to acetylcholine receptors (nicotinic or muscarinic).



Definition:
Refers to the concentration gradient of an ion or molecule. The concentration gradient may exist across a biological membrane, where the concentration is higher on one side of the membrane compared to the other side. Concentration gradient may also exist in a solution without an apparent barrier separating the area of higher concentration from the area of lower concentration. In both cases, the free energy that results from the concentration difference drives the movement of the ion/molcule from the area of higher concentration to the area of lower concentration. In free solution, the ion/molecule simply diffuses down its gradient. Movement across a biological membrane is more complicated and is a function of lipid solubility of the ion/molecule as well as the presence of channels or transport proteins that can allow the ion/molecule to cross the membrane (see Lipid Bilayer Permeability and Summary of Membrane Transport Processes).

Related glossary terms/phrases:
Electrical gradient
Electrochemical gradient



Definition:
A potent blocker of nicotinic cholinergic receptors (nicotinic acetylcholine receptor, nAChR) found at the neuromuscular junction. At small doses, curare can lead to muscle weakness. At high doses, curare can lead to paralysis of skeletal muscles, which would also result in asphyxiation (and ultimately death) due to paralysis of the diaphragm. Curare was commonly the active agent of poison arrow.

Other resources:
See Wikipedia



Definition:
Electrogenic pumps are primary active transporters that hydrolyze ATP and use the energy released from ATP hydrolysis to transport ions across biological membranes leading to the translocation of net charge across the membrane.

For example, the Na+/K+ ATPase (sodium pump) is an electrogenic pump because during every transport cycle, it transports 3 Na+ ions out of the cell and 2 K+ ions into the cell. This leads to the movement of one net positive charge out of the cell making this process electrogenic.

Related glossary terms/phrases:
Electrogenic



Abbreviation:
GABA

Definition:
GABA is an inhibitory amino acid neurotransmitter in the central and peripheral nervous systems. It is the most abundant inhibitory neurotransmitter in the nervous system. During embryonic development, GABA acts as an excitatory neurotransmitter at some central synapses. GABA is a classical neurotransmitter. Its action is exerted via the activation of GABAA, GABAB, and GABAC receptors. GABAA and GABAC receptors are ligand-gated chloride channels, whereas GABAB receptors are G protein coupled receptors. At GABAergic synapses, the action of GABA is terminated by GABA transporters (GAT), which transport GABA from the extracellular space in synaptic and extrasynaptic regions into neurons and glia.



Definition:
Excretion of glucose in urine. This is indicative of an abnormal condition such as hyperglycemia caused by diabetes mellitus.



Definition:
Glutamate (Glu, E) is one of the standard twenty (20) amino acids used by cells to synthesize peptides, polypeptides, and proteins. It has a molecular weight of 147.13 g/mol. Its side chain has a pKa of 4.07 and, therefore, glutamate has a net negative charge at physiological pH.

In the nervous system, glutamate is an excitatory amino acid neurotransmitter. In fact, glutamate is the most abundant excitatory neurotransmitter in the nervous system. Glutamate is a classical neurotransmitter. Its action is exerted via the activation of glutamate receptors (GluR), some of which are ligand-gated ion channels (ionotropic receptors), and some are G protein coupled receptors (GPCRs, metabotropic receptors). At glutamatergic synapses, the action of glutamate is terminated by glutamate transporters (EAAT, excitatory amino acid transporter), which transport glutamate from the extracellular space in synaptic and extrasynaptic regions into neurons and glia.



Definition:
Glycine (Gly, G) is one of the standard twenty (20) amino acids. At a molecular weight of 75.07 g/mol, it is the smallest of the 20 amino acids used by cells to synthesize peptides, polypeptides, and proteins.

In the nervous system, glycine is also an inhibitory amino acid neurotransmitter. Glycinergic synapses are most commonly found in brain stem and spinal cord circuits. Glycine is a classical neurotransmitter. Its action is exerted via the activation of ionotropic glycine receptors (GlyR), which are ligand-gated chloride channels. At glycinergic synapses, the action of glycine is terminated by glycine transporters (GlyT), which transport glycine from the extracellular space in synaptic and extrasynaptic regions into neurons and glia.



Definition:
Secondary active transport is a type of active transport across a biological membrane in which a transport protein couples the movement of an ion (typically Na+ or H+) down its electrochemical gradient to the movement of another ion or molecule against a concentration or electrochemical gradient. The ion moving down its electrochemical gradient is referred to as the driving ion. The ion/molecule being transported against a chemical or electrochemical gradient is referred to as the driven ion/molecule.

This transport process is referred to as active transport because the driven ion/molecule is transported against a concentration or electrochemical gradient. It is referred to as secondary active transport because no ATP hydrolysis is involved in this process (as opposed to primary active transport). The energy required to drive transport resides in the transmembrane electrochemical gradient of the driving ion.

Secondary active transport is also referred to as ion-coupled transport. Those utilizing Na+ as the driving ion are called Na+-coupled transporters. Those utilizing H+ as the driving ion are called H+-coupled transporters.

Two types of secondary active transport exist: cotransport (also known as symport) and exchange (also known as antiport). Na+/glucose cotransporter and H+/dipeptide cotransporter are examples of cotransporters. Na+/Ca2+ exchanger and Na+/H+ exchanger are examples of exchangers.

Related glossary terms/phrases:
Cotransport
Symport
Exchange
Antiport

See also:
Lecture notes on Secondary Active Transport









Posted: Sunday, March 31, 2013
Last updated: Friday, August 28, 2015