PhysiologyWeb Logo  Search
PhysiologyWeb Loading...

Glossary of Physiology Terms
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Search

There are 20 glossary search results for:   protein




Definition:
Proposed model for the inactivation of some voltage-gated ion channels. According to this model, after channel opening, the pore of the open channel is plugged by a globular cytoplasmic portion of the channel protein. The globular portion (ball of amino acids) is tethered to the rest of the protein by a linker part (chain of amino acids).

Related glossary terms/phrases:
Channel inactivation

See also:
Neuronal Action Potential - Important Features of the Neuronal Action Potential



Definition:
Refers to a conformational change of a channel protein by which the channel goes from the open state to the inactive state. The inactive state refers to a conformational state in which ions are not allowed to permeate the channel pore. Thus, with respect to ion permeability, the inactive state is similar to the close state of the channel. Ions cannot permeate the channel pore either in the closed or inactive state. However, the channel assumes very distinct and different conformations in the inactive state and closed state.

See also:
Neuronal Action Potential - Important Features of the Neuronal Action Potential



Definition:
An integral membrane protein which contains a pore through which ions, water, or polar molecules permeate. For any given channel, the pore is usually very selective for the particular ion or molecule. For example, sodium (Na+) channels are very selective for Na+ over other cations.

The channel pore may be constitutively open, or it may be gated to the open state by various stimuli such as chemical ligands, voltage, temperature, or mechanical stimulation of the membrane.



Definition:
Refers to the concentration gradient of an ion or molecule. The concentration gradient may exist across a biological membrane, where the concentration is higher on one side of the membrane compared to the other side. Concentration gradient may also exist in a solution without an apparent barrier separating the area of higher concentration from the area of lower concentration. In both cases, the free energy that results from the concentration difference drives the movement of the ion/molcule from the area of higher concentration to the area of lower concentration. In free solution, the ion/molecule simply diffuses down its gradient. Movement across a biological membrane is more complicated and is a function of lipid solubility of the ion/molecule as well as the presence of channels or transport proteins that can allow the ion/molecule to cross the membrane (see Lipid Bilayer Permeability and Summary of Membrane Transport Processes).

Related glossary terms/phrases:
Electrical gradient
Electrochemical gradient



Definition:
Specifically, thyroid colloid. Refers to the protein-rich fluid within the lumen of thyroid follicles. The major protein component of the thyroid colloid is thyroglobulin.



Definition:
A type of secondary active transport across a biological membrane in which a transport protein couples the movement of an ion (usually Na+ or H+) down its electrochemical gradient to the movement of another ion or molecule against a concentration or electrochemical gradient. The ion moving down its electrochemical gradient is referred to as the driving ion. The ion/molecule being transported against a chemical or electrochemical gradient is referred to as the driven ion/molecule.

In cotransport, the direction of transport is the same for both the driving ion and driven ion/molecule (into the cell or out of the cell).

An example is the Na+/glucose cotransporter (SGLT), which couples the movement of Na+ into the cell down its electrochemical gradient to the movement of glucose into the cell against its concentration gradient.

Cotransport is also commonly referred to as symport.

Transport proteins that are involved in this type of transport are referred to as cotransporters or symporters.

See:
Symport

Related glossary terms/phrases:
Secondary active transport
Exchange

See also:
Lecture notes on Secondary Active Transport



Definition:
A type of secondary active transport across a biological membrane in which a transport protein couples the movement of an ion (usually Na+ or H+) down its electrochemical gradient to the movement of another ion or molecule against a concentration or electrochemical gradient. The ion moving down its electrochemical gradient is referred to as the driving ion. The ion/molecule being transported against a chemical or electrochemical gradient is referred to as the driven ion/molecule.

In exchange, the driving ion and the driven ion/molecule are transported across the biological membrane in opposite directions.

An example is the Na+/Ca2+ exchanger (NCX), which couples the movement of 3 Na+ ions into the cell down its electrochemical gradient to the movement of 1 Ca2+ ion out of the cell against its electrochemical gradient.

Exchange is also commonly referred to as antiport.

Transport proteins that are involved in this type of transport are referred to as exchangers or antiporters.

See:
Antiport

Related glossary terms/phrases:
Secondary active transport
Cotransport

See also:
Lecture notes on Secondary Active Transport



Abbreviation:
GABA

Definition:
GABA is an inhibitory amino acid neurotransmitter in the central and peripheral nervous systems. It is the most abundant inhibitory neurotransmitter in the nervous system. During embryonic development, GABA acts as an excitatory neurotransmitter at some central synapses. GABA is a classical neurotransmitter. Its action is exerted via the activation of GABAA, GABAB, and GABAC receptors. GABAA and GABAC receptors are ligand-gated chloride channels, whereas GABAB receptors are G protein coupled receptors. At GABAergic synapses, the action of GABA is terminated by GABA transporters (GAT), which transport GABA from the extracellular space in synaptic and extrasynaptic regions into neurons and glia.



Definition:
Glutamate (Glu, E) is one of the standard twenty (20) amino acids used by cells to synthesize peptides, polypeptides, and proteins. It has a molecular weight of 147.13 g/mol. Its side chain has a pKa of 4.07 and, therefore, glutamate has a net negative charge at physiological pH.

In the nervous system, glutamate is an excitatory amino acid neurotransmitter. In fact, glutamate is the most abundant excitatory neurotransmitter in the nervous system. Glutamate is a classical neurotransmitter. Its action is exerted via the activation of glutamate receptors (GluR), some of which are ligand-gated ion channels (ionotropic receptors), and some are G protein coupled receptors (GPCRs, metabotropic receptors). At glutamatergic synapses, the action of glutamate is terminated by glutamate transporters (EAAT, excitatory amino acid transporter), which transport glutamate from the extracellular space in synaptic and extrasynaptic regions into neurons and glia.



Definition:
Glycine (Gly, G) is one of the standard twenty (20) amino acids. At a molecular weight of 75.07 g/mol, it is the smallest of the 20 amino acids used by cells to synthesize peptides, polypeptides, and proteins.

In the nervous system, glycine is also an inhibitory amino acid neurotransmitter. Glycinergic synapses are most commonly found in brain stem and spinal cord circuits. Glycine is a classical neurotransmitter. Its action is exerted via the activation of ionotropic glycine receptors (GlyR), which are ligand-gated chloride channels. At glycinergic synapses, the action of glycine is terminated by glycine transporters (GlyT), which transport glycine from the extracellular space in synaptic and extrasynaptic regions into neurons and glia.



Definition:
A total plasma calcium level that is greater than the normal range of 2.2 - 2.6 mM (9 - 10.5 mg/dL). The free calcium concentration in the plasma is approximately 1.5 mM (6 mg/dL), and the remaining amount is bound to plasma proteins.

Related glossary terms/phrases:
Hypocalcemia



Definition:
A total plasma calcium level that is less than the normal range of 2.2 - 2.6 mM (9 - 10.5 mg/dL). The free calcium concentration in the plasma is approximately 1.5 mM (6 mg/dL), and the remaining amount is bound to plasma proteins.

Related glossary terms/phrases:
Hypercalcemia



Definition:
A glycoprotein released by parietal cells (also know as oxyntic cells) located in the fundus region of the stomach. Intrinsic factor is required for vitamin B12 absorption in the small intestine.



Definition:
Refers to the ability of the thyroid gland to accumulate iodide (I) against a steep electrochemical gradient. While the iodide concentration in plasma and interstitial fluid is approximately 300 nL, iodide concentration in the cytoplasm of thyroid follicular cells, as well as the lumen of thyroid follicles can be many folds higher. The protein that enables iodide transport into the thyroid gland against an electrochemical gradient is the Na+/iodide symporter (NIS), which is located in the basolateral membrane of thyroid follicular cells. Within the lumen of thyroid follicles, iodide is incorporated into the tyrosine residues of thyroglobulin during thyroid hormone biosynthesis, hence, allowing very high iodide concentrations in the colloid.



Definition:
Permeability refers to the ease with which molecules cross biological membranes. It may also refer to the ease with which ions or molecules pass through the pore of channel proteins.

Related glossary terms/phrases:
Permeable
Impermeable
Permeant
Impermeant

See also:
Lipid Bilayer Permeability



Definition:
Plasma is the fluid portion of whole blood, which makes up about 40% to 60% of the total volume of whole blood. Plasma has a light yellow color and is generally obtained by separating the fluid portion from the blood formed elements through sedimentation or centrifugation. Plasma contains mostly water and, in addition, minerals, nutrients, proteins, hormones, and gases (oxygen and carbon dioxide). Unlike serum, in which fibrinogen and other clotting factors have been removed by coagulation, fibrinogen and other clotting factors remain present in plasma.

Plasma is one the main fluid compartments of the human body, making up nearly 10% of the total volume of body fluids. Plasma makes up the intravascular fluid compartment; itself a subcompartment of the extracellular fluid compartment.



Definition:
Secondary active transport is a type of active transport across a biological membrane in which a transport protein couples the movement of an ion (typically Na+ or H+) down its electrochemical gradient to the movement of another ion or molecule against a concentration or electrochemical gradient. The ion moving down its electrochemical gradient is referred to as the driving ion. The ion/molecule being transported against a chemical or electrochemical gradient is referred to as the driven ion/molecule.

This transport process is referred to as active transport because the driven ion/molecule is transported against a concentration or electrochemical gradient. It is referred to as secondary active transport because no ATP hydrolysis is involved in this process (as opposed to primary active transport). The energy required to drive transport resides in the transmembrane electrochemical gradient of the driving ion.

Secondary active transport is also referred to as ion-coupled transport. Those utilizing Na+ as the driving ion are called Na+-coupled transporters. Those utilizing H+ as the driving ion are called H+-coupled transporters.

Two types of secondary active transport exist: cotransport (also known as symport) and exchange (also known as antiport). Na+/glucose cotransporter and H+/dipeptide cotransporter are examples of cotransporters. Na+/Ca2+ exchanger and Na+/H+ exchanger are examples of exchangers.

Related glossary terms/phrases:
Cotransport
Symport
Exchange
Antiport

See also:
Lecture notes on Secondary Active Transport



Definition:
Secretion refers to cellular release of substances (ions and small and large molecules) to the external environment of the cell. Secretion may be accomplished by exocytosis (fusion of transport vesicles with the plasma membrane and release of vesicle contents to the external environment), by transport of molecules across the plasma membrane (via the activity of transport proteins such as pumps, transporters, and channels), or by simple diffusion of fat-soluble molecules through the plasma membrane out of the cell.

For example, endocrine cells secrete hormone molecules that then enter the bloodstream. Neurons release (i.e., secrete) neurotransmitter molecules into the synaptic cleft. Some neurons secrete neurohormones; which similar to hormones, travel in the bloodstream to reach distant target cells. Epithelial cells secrete molecules in luminal spaces, such as digestive enzymes secreted into the digestive tract by various cell types.

See also:
Excretion



Definition:
Tastants are taste-provoking chemical molecules that are dissolved in ingested liquids or saliva.

Tastants stimulate the sense of taste. It can also be said that tastants elicit gustatory excitation.

A tastant is the appropriate ligand for receptor proteins located on the plasma membrane of taste receptor cells.



Abbreviation:
Tg

Definition:
The major glycoprotein found within the colloid of thyroid follicles. The thyroid hormones (T3 and T4) are synthesized on the backbone of thyroglobulin.









Posted: Sunday, March 31, 2013
Last updated: Friday, August 28, 2015